
Solutions for Sample Questions for Midterm 2 (CS 421 Fall 2014)  
 
On the actual midterm, you will have plenty of space to put your answers. 
Some of these questions may be reused for the exam. 
 
1. Write the definition of an OCAML variant type reg_exp to express abstract syntax trees for regular 

expressions over a base character set of booleans. Thus, a boolean is a reg_exp, epsilon is a 
reg_exp, the concatenation of two reg_exp’s is a reg_exp, the “choice” of two reg_exp’s is a 
reg_exp, and the Kleene star of a reg_exp is a reg_exp.  

Solution: 
type reg_exp = 
   Char of bool  
 | Epsilon  
 | Concat of (reg_exp * reg_exp) 
 | Choice of (reg_exp * reg_exp) 
 | Kleene_star of reg_exp 
 | Paren of reg_exp     (* I would accept it with this case missing *) 
 

2. Given the following OCAML datatype: 
type int_seq = Null  | Snoc of (int_seq * int) 

write a tail-recursive function in OCAML all_pos : int_seq -> bool that returns true if every 
integer in the input int_seq to which all_pos is applied is strictly greater than 0 and false 
otherwise.  Thus all_pos (Snoc(Snoc(Snoc(Null,3),5),7)) should returns true, but  
all_pos (Snoc(Null,~1)) and all_pos (Snoc(Snoc(Null, 3),0)) should both return false.  

Solution: 
       let rec all_pos s = 
            (match s with Null -> true 
               | Snoc(seq, x) -> if x <= 0 then false else all_pos seq);; 
 



 
3. Given a polymorphic type derivation for  

  {} |- let pair = fun x -> (x, x) in pair(pair 3) : ((int * int) * (int * int)) 
Solution: 
 
Let  Γ = {pair : ∀’a. ‘a -> ‘a * ‘a}. 
The infixed data constructor , (comma) is treated as a Binary Operator and  
has type ∀’a ‘b. ‘a -> ‘b -> ‘a * ‘b 
 
Let LeftTree = 
       
          Var__________                 Var_____________ 
                {x : ‘a} |- x                         {x : ‘a} |- x : ‘a         Instance: ‘a → ‘a, ‘b → ‘a  
   BinOp____________________________________________________________ 
                                             {x : ‘a}. |- (x, x) : ‘a * ‘a 
                               Fun ____________________________ 
                                        {} |- fun x -> (x,x) : ‘a -> ‘a * ‘a   
 
Let RightTree = 
                                                                                      Var __Instance: ‘a → int____    Const _________ 
                                                                                             Γ |- pair : int -> int * int                  Γ |- 3 : int   
 Var __Instance: ‘a → int * int________________    App  ____________________________________ 
          Γ |- pair : int * int -> ((int * int) * (int * int))                           Γ |- pair 3 : int * int 
App ____________________________________________________________________ 
                    {pair : ∀’a. ‘a -> ‘a * ‘a}|- pair(pair 3) : ((int * int) * (int * int)) 
 
 
Then the full proof is  
 
                             LeftTree                                     RightTree 
   Let ________________________________________________________ 

    {} |- let pair = fun x -> (x, x) in pair(pair 3) : ((int * int) * (int * int)) 



 
4. Give a (most general) unifier for the following unification instance. Capital letters denote variables 

of unification. Show your work by listing the operation performed in each step of the unification and 
the result of that step.  

{X = f(g(x),W); h(y) = Y;  f(Z,x) = f(Y,W)} 
     
Solution:  
Unify {X = f(g(x),W); h(y) = Y;  f(Z,x) = f(Y,W)} 
= Unify {h(y) = Y; f(Z,x) = f(Y,W)} o {X → f(g(x),W)}      by eliminate  (X = f(g(x),W)) 
= Unify {Y = h(y); f(Z,x) = f(Y,W)} o {X → f(g(x),W)}      by orient  (h(y) = Y) 
= Unify {f(Z,x) = f(h(y),W)} o {X → f(g(x),W), Y → h(y)} by eliminate  (Y = h(y)) 
= Unify {Z = h(y); x=W} o {X → f(g(x),W), Y → h(y)}       by decompose  (f(Z,x) = f(h(y),W)) 
= Unify {x = W} o {X → f(g(x),W), Y → h(y), Z → h(y)}    by eliminate  (Z = h(y)) 
= Unify {W = x} o {X → f(g(x),W), Y → h(y), Z → h(y)}    by orient  (x = W) 
= Unify{} o {X → f(g(x),x), Y → h(y), Z → h(y), W → x}   by eliminate  (W = x) 
Answer: {X → f(g(x),x), Y → h(y), Z → h(y), W → x} 
 
 
5. For each of the following descriptions, give a regular expression over the alphabet {a,b,c}, and a 

regular grammar that generates the language described.  
a. The set of all strings over {a, b, c}, where each string has at most one a 

Solution:  (b ∨  c)*(a ∨  ε) (b ∨  c)* 
 <S> ::= b<S> | c<S> | a<NA> | ε  
<NA> ::= b<NA> | c<NA> | ε  

    
b. The set of all strings over {a, b, c}, where, in each string, every b is immediately followed by at 

least one c. 
Solution: (a ∨  c)*(bc(a ∨  c)*)* 
 <S> ::= a<S> | c<S> | b<C> | ε  
 <C> ::= c<S> 
 

c. The set of all strings over {a, b, c}, where every string has length a multiple of four. 
Solution: ((a ∨  b ∨  c) (a ∨  b ∨  c) (a ∨  b ∨  c) (a ∨  b ∨  c))* 

  <S> ::= a<TH> | b<TH> | c<TH> | ε  
  <TH> ::= a<TW> | b<TW> | c<TW> 
  <TW> ::= a<O> | b<O> | c<O> 
  <O> ::= a<S> | b<S> | c<S> 
 



6. Consider the following grammar:  
<S> ::= <A> | <A> <S>  
<A> ::= <Id> | ( <B>  
<B> ::=  <Id> ] |  <Id><B> | ( <B>  
<Id> ::= 0 | 1  
For each of the following strings, give a parse tree for the following expression as an <S>, if one 
exists, or write “No parse” otherwise:  
 

a. ( 0 1 ( 1 ] ( ( 1 0 ] 1 
Solution: 
                             <S> 
 
                          <A>                                         <S> 

 
  (  <B>                            <A>                         <S> 
 
  <Id>  <B>                           (              <B>                   <A> 
 
    0    <Id>  <B>                         (              <B>          <Id> 
 
                                          1          (            <B>                   <Id>       <B>             1 
 
                                                         <Id>       ]                        1      <Id>   ] 
 
                                                                                                            0 

b. 0 ( 1 0 ( 1 ]  
Solution: 
                             <S> 

 
                          <A>                                         <S> 

 
                          <Id>                                             <A> 
 
                           0                                    (             <B> 
 
                                                                  <Id>      <B> 
 
                                                                     1          <Id>         <B> 
 
                                                                                   0       (       <B> 
 
                                                                                                   <Id>      ] 
 

 
c. ( 0  ( 1 0 1]  0 ] 
Solution:  No parse tree 
 



7.  Demonstrate that the following grammar is ambiguous (Capitals are non-terminals, lowercase are 
terminals):  

S  →  A a B | B a A  
A  →  b | c  
B  →  a | b  

 
 
Solution:   String: bab 
 
 
                     S                                                                  S 
 
      A            a          B                                       B             a            A 
 
       b                         b                                      b                            b 
 
 

 
8. Write an unambiguous grammar generating the set of all strings over the alphabet    {0, 1, +, -} , 

where + and – are infixed operators which both associate to the left and such that + binds more 
tightly than -. 

 
         Solution: 
 
         <S> ::= <plus>  |  <S> - <plus> 
         <plus>  :: <id> | <plus> + <id> 
         <id> ::= 0 | 1 

 
9. Write an ocamlyacc parser for the language 
 

<S> = <V> | fun <V> -> <S> | <S><S> 
where <V> is any identifier,  application (<S><S>) associates to the left and has higher  precedence 
than fun <V> -> <S> .  You should include in your header one or more datatypes for the abstract 
syntax trees of the language.  You declarations should give the constructors for the datatype token 
of the tokens input into the parser. 

 
Solution: 
%{ 
 
 type term = Var of string | Fun of (string * term) | App of (term * term) 
 
%} 
 
%token <string> IDENT 
%token ARROW FUN EOF 
 
%start main 



%type <term> main 
 
%% 
 
main: 
   term EOF       { $1 } 
 
term: 
   not_app_pos_fun                               { $1 } 
 | pos_app_no_fun not_app_pos_fun  { App($1, $2) } 
 
pos_app_no_fun: 
   pos_app_no_fun IDENT                   { App($1, Var $2) } 
 | IDENT                                                { Var $1 } 
      
not_app_pos_fun: 
   FUN IDENT ARROW term            { Fun($2,$4) } 
 | IDENT                                               { Var $1 } 
 


