
Solutions for Sample Questions for Midterm 2 (CS 421 Fall 2014)

On the actual midterm, you will have plenty of space to put your answers.
Some of these questions may be reused for the exam.

1. Write the definition of an OCAML variant type reg_exp to express abstract syntax trees for regular

expressions over a base character set of booleans. Thus, a boolean is a reg_exp, epsilon is a
reg_exp, the concatenation of two reg_exp’s is a reg_exp, the “choice” of two reg_exp’s is a
reg_exp, and the Kleene star of a reg_exp is a reg_exp.

Solution:
type reg_exp =
 Char of bool
 | Epsilon
 | Concat of (reg_exp * reg_exp)
 | Choice of (reg_exp * reg_exp)
 | Kleene_star of reg_exp
 | Paren of reg_exp (* I would accept it with this case missing *)

2. Given the following OCAML datatype:
type int_seq = Null | Snoc of (int_seq * int)

write a tail-recursive function in OCAML all_pos : int_seq -> bool that returns true if every
integer in the input int_seq to which all_pos is applied is strictly greater than 0 and false
otherwise. Thus all_pos (Snoc(Snoc(Snoc(Null,3),5),7)) should returns true, but
all_pos (Snoc(Null,~1)) and all_pos (Snoc(Snoc(Null, 3),0)) should both return false.

Solution:
 let rec all_pos s =
 (match s with Null -> true
 | Snoc(seq, x) -> if x <= 0 then false else all_pos seq);;

3. Given a polymorphic type derivation for

 {} |- let pair = fun x -> (x, x) in pair(pair 3) : ((int * int) * (int * int))
Solution:

Let Γ = {pair : ∀’a. ‘a -> ‘a * ‘a}.
The infixed data constructor , (comma) is treated as a Binary Operator and
has type ∀’a ‘b. ‘a -> ‘b -> ‘a * ‘b

Let LeftTree =

 Var__________ Var_____________
 {x : ‘a} |- x {x : ‘a} |- x : ‘a Instance: ‘a → ‘a, ‘b → ‘a
 BinOp__
 {x : ‘a}. |- (x, x) : ‘a * ‘a
 Fun ____________________________
 {} |- fun x -> (x,x) : ‘a -> ‘a * ‘a

Let RightTree =
 Var __Instance: ‘a → int____ Const _________
 Γ |- pair : int -> int * int Γ |- 3 : int
 Var __Instance: ‘a → int * int________________ App ____________________________________
 Γ |- pair : int * int -> ((int * int) * (int * int)) Γ |- pair 3 : int * int
App __
 {pair : ∀’a. ‘a -> ‘a * ‘a}|- pair(pair 3) : ((int * int) * (int * int))

Then the full proof is

 LeftTree RightTree
 Let __

 {} |- let pair = fun x -> (x, x) in pair(pair 3) : ((int * int) * (int * int))

4. Give a (most general) unifier for the following unification instance. Capital letters denote variables

of unification. Show your work by listing the operation performed in each step of the unification and
the result of that step.

{X = f(g(x),W); h(y) = Y; f(Z,x) = f(Y,W)}

Solution:
Unify {X = f(g(x),W); h(y) = Y; f(Z,x) = f(Y,W)}
= Unify {h(y) = Y; f(Z,x) = f(Y,W)} o {X → f(g(x),W)} by eliminate (X = f(g(x),W))
= Unify {Y = h(y); f(Z,x) = f(Y,W)} o {X → f(g(x),W)} by orient (h(y) = Y)
= Unify {f(Z,x) = f(h(y),W)} o {X → f(g(x),W), Y → h(y)} by eliminate (Y = h(y))
= Unify {Z = h(y); x=W} o {X → f(g(x),W), Y → h(y)} by decompose (f(Z,x) = f(h(y),W))
= Unify {x = W} o {X → f(g(x),W), Y → h(y), Z → h(y)} by eliminate (Z = h(y))
= Unify {W = x} o {X → f(g(x),W), Y → h(y), Z → h(y)} by orient (x = W)
= Unify{} o {X → f(g(x),x), Y → h(y), Z → h(y), W → x} by eliminate (W = x)
Answer: {X → f(g(x),x), Y → h(y), Z → h(y), W → x}

5. For each of the following descriptions, give a regular expression over the alphabet {a,b,c}, and a

regular grammar that generates the language described.
a. The set of all strings over {a, b, c}, where each string has at most one a

Solution: (b ∨ c)*(a ∨ ε) (b ∨ c)*
 <S> ::= b<S> | c<S> | a<NA> | ε
<NA> ::= b<NA> | c<NA> | ε

b. The set of all strings over {a, b, c}, where, in each string, every b is immediately followed by at

least one c.
Solution: (a ∨ c)*(bc(a ∨ c)*)*
 <S> ::= a<S> | c<S> | b<C> | ε
 <C> ::= c<S>

c. The set of all strings over {a, b, c}, where every string has length a multiple of four.
Solution: ((a ∨ b ∨ c) (a ∨ b ∨ c) (a ∨ b ∨ c) (a ∨ b ∨ c))*

 <S> ::= a<TH> | b<TH> | c<TH> | ε
 <TH> ::= a<TW> | b<TW> | c<TW>
 <TW> ::= a<O> | b<O> | c<O>
 <O> ::= a<S> | b<S> | c<S>

6. Consider the following grammar:
<S> ::= <A> | <A> <S>
<A> ::= <Id> | (
 ::= <Id>] | <Id> | (
<Id> ::= 0 | 1
For each of the following strings, give a parse tree for the following expression as an <S>, if one
exists, or write “No parse” otherwise:

a. (0 1 (1] ((1 0] 1
Solution:
 <S>

 <A> <S>

 (<A> <S>

 <Id> (<A>

 0 <Id> (<Id>

 1 (<Id> 1

 <Id>] 1 <Id>]

 0

b. 0 (1 0 (1]
Solution:
 <S>

 <A> <S>

 <Id> <A>

 0 (

 <Id>

 1 <Id>

 0 (

 <Id>]

c. (0 (1 0 1] 0]
Solution: No parse tree

7. Demonstrate that the following grammar is ambiguous (Capitals are non-terminals, lowercase are
terminals):

S → A a B | B a A
A → b | c
B → a | b

Solution: String: bab

 S S

 A a B B a A

 b b b b

8. Write an unambiguous grammar generating the set of all strings over the alphabet {0, 1, +, -} ,

where + and – are infixed operators which both associate to the left and such that + binds more
tightly than -.

 Solution:

 <S> ::= <plus> | <S> - <plus>
 <plus> :: <id> | <plus> + <id>
 <id> ::= 0 | 1

9. Write an ocamlyacc parser for the language

<S> = <V> | fun <V> -> <S> | <S><S>
where <V> is any identifier, application (<S><S>) associates to the left and has higher precedence
than fun <V> -> <S> . You should include in your header one or more datatypes for the abstract
syntax trees of the language. You declarations should give the constructors for the datatype token
of the tokens input into the parser.

Solution:
%{

 type term = Var of string | Fun of (string * term) | App of (term * term)

%}

%token <string> IDENT
%token ARROW FUN EOF

%start main

%type <term> main

%%

main:
 term EOF { $1 }

term:
 not_app_pos_fun { $1 }
 | pos_app_no_fun not_app_pos_fun { App($1, $2) }

pos_app_no_fun:
 pos_app_no_fun IDENT { App($1, Var $2) }
 | IDENT { Var $1 }

not_app_pos_fun:
 FUN IDENT ARROW term { Fun($2,$4) }
 | IDENT { Var $1 }

